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Abstract Assessment of mitigation strategies that combat global warming, urban heat
islands (UHIs), and urban energy demand can be crucial for urban planners and energy
providers, especially for hot, semi-arid urban environments where summertime cooling
demands are excessive. Within this context, summertime regional impacts of cool roof and
rooftop solar photovoltaic deployment on near-surface air temperature and cooling energy
demand are examined for the two major USA cities of Arizona: Phoenix and Tucson. A
detailed physics-based parametrization of solar photovoltaic panels is developed and imple-
mented in a multilayer building energy model that is fully coupled to the Weather Research
and Forecasting mesoscale numerical model. We conduct a suite of sensitivity experiments
(with different coverage rates of cool roof and rooftop solar photovoltaic deployment) for a
10-day clear-sky extreme heat period over the Phoenix and Tucson metropolitan areas at high
spatial resolution (1-km horizontal grid spacing). Results show that deployment of cool roofs
and rooftop solar photovoltaic panels reduce near-surface air temperature across the diurnal
cycle and decrease daily citywide cooling energy demand. During the day, cool roofs are
more effective at cooling than rooftop solar photovoltaic systems, but during the night, solar
panels are more efficient at reducing the UHI effect. For the maximum coverage rate deploy-
ment, cool roofs reduced daily citywide cooling energy demand by 13—14 %, while rooftop
solar photovoltaic panels by 8-11 % (without considering the additional savings derived

Electronic supplementary material The online version of this article (doi:10.1007/s10546-016-0160-y)
contains supplementary material, which is available to authorized users.

B F. Salamanca
fsalaman@asu.edu

School of Mathematical and Statistical Sciences, Arizona State University, PO Box 871804, Tempe,
AZ 85287-1804, USA

School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ, USA
School of Life Sciences, Arizona State University, Tempe, AZ, USA

Julie Ann Wrigley Global Institute of Sustainability, Arizona State University, Tempe, AZ, USA
Research Center for Energy, Environment, and Technology (CIEMAT), Madrid, Spain

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10546-016-0160-y&domain=pdf
http://dx.doi.org/10.1007/s10546-016-0160-y

204 F. Salamanca et al.

from their electricity production). The results presented here demonstrate that deployment
of both roofing technologies have multiple benefits for the urban environment, while solar
photovoltaic panels add additional value because they reduce the dependence on fossil fuel
consumption for electricity generation.

Keywords Cooling energy demand - Cool roofs - Rooftop solar photovoltaic panels - Urban
climate modelling

List of Symbols

apy Albedo of the upward face of the solar photovoltaic panels
Tair Air temperature (K) above roofs

effry Conversion efficiency of the solar photovoltaic panels

LW‘SZZ;V”W”M Downwelling longwave radiation (W m~2) from the sky

LW‘;(;,W”Wdli"g Downwelling longwave radiation (W m~2) emitted by the downward face of
the solar photovoltaic panels

LW%‘;‘Z}’W”ing Downwelling longwave radiation (W m~2) reaching a roof covered with
solar panels

SW‘;Z;V”W[U"‘? Downwelling shortwave radiation (W m~2) from the sky

SWZZZ;LW”’"S Downwelling shortwave radiation (W m~2) reaching a roof covered with
solar panels

Epy Electricity production (W m~2) of the solar photovoltaic panels

epv Emissivity of the upward face of the solar photovoltaic panels

frv Fraction of the roof covered by the solar panels

o Stefan-Boltzmann constant (W m~2 K—%)

H Sensible heat flux (W m~2) from the solar photovoltaic panels to the
atmosphere

Tpy Temperature (K) of the upward face of the solar photovoltaic panels

LW elling Upwelling longwave radiation (W m~2) emitted by the upward face of the
solar photovoltaic panels
W]u?i‘:)/;llmg Upwelling longwave radiation (W m~2) emitted by a roof covered with solar

panels

1 Introduction

Many studies reveal that the large-scale deployment of roofing technologies is an effective
means of reducing energy consumption (e.g., Akbari et al. 2009; Oleson et al. 2010; Menon
etal. 2010; Salamanca et al. 2012a; Cotana et al. 2014; Georgescu et al. 2014). Cool roofs, by
virtue of increased reflectivities, absorb less incoming shortwave radiation than dark roofs,
thereby promoting a lower skin temperature. As a result, cool roofs reduce heat transfer into
the urban environment and into buildings, decreasing near-surface air temperature and cooling
energy demand. In wintertime, the potential penalty associated with cool roofs is in general
outweighed by the summer benefit and can be annulled if the roofs are typically covered with
snow during the cold season (Bretz and Akbari 1997). However, energy savings are more
limited for areas that do not have extensive wintertime snow pack, such as the Mid-Atlantic
states of the USA (e.g., Georgescu et al. 2014). Various studies have documented the direct
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benefits of large-scale cool roof deployment in urban areas. Performing continental-scale
simulations with a regional climate model, Millstein and Menon (2011) reported that nation-
wide large-scale cool roof deployment for the USA reduce the summertime air temperature
by 0.1-0.5°C in most urban locations. Similarly, Georgescu et al. (2012, 2013) reported
that summertime statewide warming due to projected urban expansion for Arizona could be
reduced by about 50 % with the complete integration of highly reflective cool roofs. More
recently, Li et al. (2014) have evaluated regional impacts of cool and green roof deployment
for the Baltimore-Washington (USA) metropolitan area during an extreme heat event. Green
roofs can more efficiently partition available energy into latent heat and reduce sensible heat
transmission into the urban environment. Although regional differences exist between cool
and green roof technologies (e.g., Georgescu et al. 2014), and their assessment must extend
beyond the examination of near-surface temperature impacts, this recent work has demon-
strated that green roofs (assuming abundant soil moisture) can be nearly as effective as cool
roofs at reducing near-surface air temperature.

Roofing technologies, however, are not limited to cool and green roofs. Recent investi-
gations have documented indirect benefits—in addition to the reduction of greenhouse gas
emissions—derived from the use of solar photovoltaic systems in urban environments. For
example, Dominguez et al. (2011) showed that a building partially covered with solar photo-
voltaic panels reduces its annual cooling load. Using a simple effective albedo to characterize
the efficiency of solar photovoltaic panels, Taha (2013) reported that large-scale rooftop solar
panels deployment for the Los Angeles region would not have adverse effects on air tem-
perature and urban heat islands (UHIs). In fact, Taha’s simulations (using currently available
solar conversion efficiencies) predicted a regional cooling up to 0.2 °C for the metropolitan
area.

Other researchers have utilized more advanced parametrizations of solar systems to eval-
uate regional impacts of large-scale rooftop solar deployment. For instance, Scherba et al.
(2011), using a sophisticated building energy model forced with weather-based datasets,
reported that solar photovoltaic arrays (deployed on the top of black roofs) can reduce (on
average) the daily sensible heat flux into the urban environment by 11 %. On the other hand,
Masson et al. (2014), by means of an offline urban canopy model, demonstrated that rooftop
solar panels can reduce the near-surface air temperature of Paris, France up to 0.2 °C during
the day, and the UHI intensity (i.e., the 2-m air temperature difference between the warmest
urban zone and its surrounding rural neighbourhoods) up to 0.3 °C during the night under the
assumption of a practical deployment scenario (in this hypothetical situation approximately
50 % of each roof was covered with solar panels).

Previous work has provided important insights into potential benefits of rooftop solar
arrays. In addition to electricity generation, rooftop solar panels provide further benefits via
reduction of the near-surface air temperature. However, in order to provide more realisti-
cally quantitative and practical guidance to policy makers and urban planners, such research
requires a fully dynamic (i.e., interactive) coupling between solar panels arrays within a
building energy model with the outdoor environment.

Here, we thus evaluate (for the first time to our knowledge) regional impacts of large-
scale cool roof and rooftop solar photovoltaic deployment on near-surface air temperature
and citywide cooling energy demand using a fully coupled modelling system composed of
a regional climate model and a building energy model that is interactive with the outdoor
environment. Specifically, we characterize the diurnal cycle of near-surface air temperature
and citywide air-conditioning electricity consumption for different coverage rates of large-
scale cool roof and rooftop solar photovoltaic deployment for the two major USA cities of
Arizona: Phoenix and Tucson. Both Phoenix and Tucson exhibit an intense nocturnal UHI,
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but during the day, they can show oasis effect (e.g., Brazel et al. 2000; Georgescu et al.
2011). The outline of the article is as follows: methodology and numerical experiments are
described in Sect. 2. The discussion of the results is presented in Sect. 3, and conclusions
and suggestions for future research are presented in Sect. 4.

2 Methodology

We use the non-hydrostatic (V3.4.1) version of the Weather Research and Forecasting (WRF)
model (Skamarock et al. 2008) coupled to the multilayer building energy (BEP+BEM) sys-
tem (Salamanca et al. 2011) to characterize the diurnal cycle of near-surface air temperature
and citywide air-conditioning electricity consumption (herein near-surface air temperature
refers to the 2-m air temperature above ground level). The Noah land-surface model (Chen
and Dudhia 2001; Ek et al. 2003) was applied to the fraction of grid cells with natural cover
and the multilayer building energy model to the fraction with built cover. The BEP+BEM sys-
tem is a building energy model (BEM; Salamanca et al. 2010; Salamanca and Martilli 2010)
integrated into a multilayer building effect parametrization (BEP; Martilli et al. 2002) that
computes heat exchange between the buildings and the outdoor environment as well as the
anthropogenic heating due to air-conditioning systems (Salamanca et al. 2012b, 2014, 2015;
Martilli 2014; Chow et al. 2014). The BEP+BEM system’s ability to reproduce the observed
diurnal cycle of near-surface variables (air temperature, wind speed, and wind direction) and
citywide air-conditioning electricity consumption has been demonstrated on several occa-
sions (specifically, during several recent extreme heat events including that analyzed here)
for the Phoenix metropolitan area (Salamanca et al. 2013, 2014). The excellent agreement
obtained in these two previous studies provides confidence in assessing regional impacts of
large-scale cool roof and rooftop solar photovoltaic deployment.

2.1 Parametrization of Rooftop Solar Photovoltaic Panels

The parametrization adopted here, to characterize solar photovoltaic arrays in the multilayer
BEM, is based on the scheme proposed by Masson et al. (2014). In Masson’s scheme,
solar panels are assumed to be horizontal to avoid unnecessary complexities and details of
individual buildings. Here, the same assumption is adopted, and solar panels are assumed
to be parallel (or almost parallel) to the roofs. The sensible heat flux from a rooftop solar
photovoltaic panel to the atmosphere (term H in Eq. 1 below) is computed as the residual
term of the following energy balance equation,

downwelling downwelling upwelling upwelling
(1 —apy)SWg, + LW, — LW 4+ LW

_ng;wnwelling — Epy+ H, 1

where the left-hand side represents the net all-wave radiative flux (W m~2) gained by the
solar panel and the term Epy represents its electricity production (for a complete description
of symbols used see the List of Symbols). The first term (on the left-hand side) is the net
shortwave radiation gained by the upward face of the solar panel, the second and third terms
are the net longwave radiation, and finally the fourth and fifth terms represent the net longwave

radiation gained by the downward face of the solar panel. The upward longwave radiation

) 1li d 1li
from a solar panel is computed as LW';,?,WE "8 — epyo TI?V +(1— spv)LWS,:V"WE "8 and the

downward longwave radiation emitted by the solar panel to the roof as LWff;,W”W”mg =0 Tjir
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(under the hypothesis that the temperature of the downward face is always approximately

equal to the air temperature above the roof). Finally, the surface temperature of the upward

face is parametrized as Tpy = Ty; + 0.05S WS”TV”W”'”A’

Epy = ef fovSWep™ """ min[1: 1—0.005(Tpy —298.15)] to take into account that solar
photovoltaic panels are more efficient at 25 °C than at higher temperatures (for more details
see Masson et al. 2014).

We assume that the shadowed area of a roof partially covered with solar panels is equal to
the surface area of the solar photovoltaic arrays and, as a result, the radiative contributions

to the surface energy balance of the roof have been modified as follows,

, and the electricity production as

d Iling d lling
SWRZ;;nwe ing _ (1— fPV)SWS/:)ywnwe mg,, 2)

for the shortwave component and
downwelling downwelling downwelling
LWR(mf =1- fPV)LWS , + fPVLWpV , 3)

for the longwave component, where fpy is the fraction of the roof covered by the solar
panels. In the BEP+BEM system, a single temperature is still computed for the roof, and
no distinction is made between the parts under or adjacent to the solar panels. However, in
order to take into account the effect of solar panels, the total sensible heat flux from a roof
to the atmosphere is weight-averaged considering both contributions; the contribution from
the solar photovoltaic panels (term H in Eq. 1) and the contribution from the rest of the roof
(i.e, the fraction of the roof without solar panels).

2.2 Numerical Experiments

We conduct 12 high resolution WRF model experiments, each one covering the same 10-day
clear-sky extreme heat period from July 10 (0000 LT) to July 19 (2300 LT) 2009 to assess
regional impacts of large-scale cool roof and rooftop solar photovoltaic deployment on near-
surface air temperature and cooling energy demand. The same period has been extensively
evaluated against observations for air temperature, wind speed, and wind direction for the
Phoenix metropolitan area (Salamanca et al. 2013, 2014), but now we further include the
Tucson metropolitan area for the assessment of the model performance (see Sect. 3). All WRF
model experiments were initiated 7 h prior [i.e., July 10 (0000 UTC)], and this time interval
was considered as the model spin-up period. Previous WRF model simulations (Salamanca
et al. 2015) used identical set-up (including the same horizontal grid domains) and thus only
the main points of the model configuration are described here. The horizontal domain was
composed of four two-way nested domains with 135 x 115 (domain 1), 201 x 183 (domain
2), 390 x 321 (domain 3), and 615 x 555 (innermost domain) grid points, with spatial
resolutions of 27, 9, 3, and 1 km, respectively (Fig. 1a). The inner domain covers almost
the entire state of Arizona, and includes both Phoenix and Tucson metropolitan regions.
All WRF model experiments were conducted with initial and boundary conditions obtained
from the National Centers for Environmental Prediction Final Analysis data (number ds083.2)
with a grid spacing of 1° x 1° and a temporal resolution of 6 h. The urban landscape was
characterized using the US Geological Survey 30-m 2006 National Land Cover dataset (Fry
2011) in the inner domain (Fig. 1b, ¢). For the non-urban part, land-use categories were
implemented using the MODIS satellite land-cover classification. Building morphological
characteristics and thermal properties for roofs, roads, and vertical walls were obtained from
Burian et al. (2002) and Clarke et al. (1991), and are detailed in Salamanca et al. (2013, 2014,
2015). During the 10-day extreme heat period it was assumed that every building made use
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(a) Numerical domains

(b)

1132°W 12.8°W 11245 11Z2.0% 111.6'% 1.2 11,50 111.30°W 111,100 110.90°W  110.70%  110.50°W

1: Low Intensity Residential (Green)
2: High Intensity Residential (Yellow)
3. Commercial or Industrial (Red)

Fig. 1 a The four two-way nested domains used within WRF model experiments. Terrain height is plotted at
intervals of 250 m. b Urban classification based on Fry (2011) for the Phoenix metropolitan area. ¢ Same as
in (b) but for the Tucson metropolitan area

of air-conditioning systems and the resulting anthropogenic heat was rejected as sensible
heat into the urban environment. This assumption is fully justified because air-conditioning
systems that reject latent heat into the urban environment are commonly installed in large
buildings in commercial areas and these areas (based on Fry 2011) cover less than 1 % of
the current urban landscape in Arizona. However, for cities with extensive commercial areas
(e.g., New York City) the effect of latent heat release can be significant (Gutierrez et al. 2015).
The Phoenix and Tucson metropolitan areas experience harsh summertime conditions and
because daytime maximum near-surface temperatures frequently exceed 40 °C both urban
regions make considerable use of air-conditioning systems.

The control WRF model experiment (hereafter denoted as CTRL) was performed by
setting the albedo of the roofs equal to 0.2, and by setting the fraction of the roofs covered by
the solar panels at zero. The remaining 11 WRF model sensitivity experiments correspond
to different coverage rates of both roofing technologies, considered individually or jointly
(Table 1 contains the complete list of WRF model experiments). For example, the WRF model
experiment hereafter denoted as ALB0.75 represents a hypothetical situation where 75 % of
each roof is covered with highly reflective membranes [we characterized highly reflective
surfaces with an albedo equal to 0.8 (Oleson et al. 2010; Scherba et al. 2011)]. Similarly, the
WRF model simulation denoted as FPV0.5 describes a hypothetical situation where 50 %
of each roof is covered with solar photovoltaic panels. Finally, the WRF model experiment
henceforth denoted as FPV0.75_ALBO0.25 represents a hypothetical hybrid situation where
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Table 1 Complete list of WRF model experiments

WRF model experiments Fraction (%) of the roofs covered Fraction (%) of the roofs covered
with highly reflective membranes with solar photovoltaic panels
CTRL 0 0
ALBO0.25 25 0
ALBO.5 50 0
ALBO0.75 75 0
ALB1.0 100 0
FPV0.25 0 25
FPVO0.5 0 50
FPV0.75 0 75
FPV1.0 0 100
FPVO0.25_ALBO0.75 75 25
FPV0.5_ALBO.5 50 50
FPV0.75_ALBO0.25 25 75

75 % of each roof is covered with solar panels and the remaining 25 % is covered with highly
reflective membranes. All WRF model experiments that involved solar photovoltaic arrays
were conducted by setting the albedo, emissivity, and conversion efficiency of the solar panels
equal to 0.11, 0.93, and 0.14, respectively, which represent typical values for contemporary
solar panels technology (e.g., Taha 2013; Masson et al. 2014)

3 Results and Discussion

Here, the WRF model 4 the (BEP+BEM) system’s ability to reproduce the observed diurnal
cycle of near-surface variables during the 10-day extreme heat period is evaluated. Figure 2
shows the daily CTRL simulation evolution of near-surface air temperature, wind speed, and
wind direction against six urban Arizona Meteorological Network weather stations (AZMET;
http://ag.arizona.edu/azmet) located within the innermost domain: Buckeye, Mesa, Payson,
Phoenix Encanto, Phoenix Greenway, and Tucson. The WRF model preprocessing system at
1-km spatial resolution classified all six stations as urban. The WRF model’s hourly output
frequency was averaged over all six stations (considering the nearest grid point to station
location) and compared with the corresponding averaged observations. Results show that the
CTRL experiment slightly overestimated near-surface wind speed, but captured reasonably
well the daily evolution of near-surface wind direction and 2-m air temperature, including
maximum and minimum temperatures, during the extreme heat event. This notable agreement
provides confidence in assessing regional impacts of large-scale cool roof and rooftop solar
photovoltaic deployment.

3.1 Regional Impacts on Near-Surface Air Temperature

Here, summertime regional effects of cool roof and rooftop solar photovoltaic deployment
on near-surface air temperature are analyzed. Figure 3a—d [T>(ALB1.0) — 7>(CTRL)] illus-
trates the greater daytime (hereafter understood as the time interval from 0700 to 1900
local time unless specified otherwise) than nighttime (hereafter understood as the time
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Fig. 2 a Time series of observed (black curve) and CTRL-modelled (red curve) 2-m air temperature (°C)
averaged over all six AZMET urban stations (Buckeye, Mesa, Payson, Phoenix Encanto, Phoenix Greenway,
and Tucson) during the 10-day extreme heat period in July 2009. b Same as in (a) but for the 10-m wind speed
(m s7h. (¢) Same as in (a) but for the 10-m wind direction (°). Root-mean-square errors (RMSE) and mean
absolute errors (MAE) are also indicated

interval from 2000 to 0600 local time unless specified otherwise) cooling effect due to
maximum coverage rate of cool roofs. For this maximum coverage rate scenario, cool roofs
lowered near-surface temperatures by 0.4—0.8 °C during the daytime, and rooftop solar pan-
els T>(FPV1.0) — T>(CTRL) lowered near-surface temperatures (Fig. 3e-h) by 0.2-0.4°C
(i.e., the daytime cooling for solar panels was roughly half of the daytime cooling asso-
ciated with cool roofs). On the other hand, solar panels generally lowered near-surface
temperatures by 0.4-0.8 °C during the night, directly combating the warming effects asso-
ciated with the nocturnal UHI. Nighttime cooling associated with cool roofs was less
by comparison, generally ranging between 0.1 and 0.4°C (i.e., the nighttime cooling for
solar panels was roughly twice as large as the nighttime cooling associated with cool
roofs)

The behaviour just described is evident for less than maximum coverage rates as well.
Figure S1 (a—d) (in Supplementary material) shows the mean impacts for a high large-scale
deployment scenario of cool roofs 75(ALBO0.75) — 7,(CTRL). During the day, cool roofs
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Fig. 3 Modelled mean 2-m air temperature differences 75 (ALB1.0) — 7, (CTRL) averaged for the entire 10-
day extreme heat period in July 2009 during nighttime hours (a, b) and during daytime hours (¢, d) for Phoenix
(left) and Tucson (right) regions, respectively. e-h Same as in (a—d) but for 75 (FPV1.0) — 75 (CTRL). Urban
land use is bounded by black contours
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reduced the near-surface air temperature up to 0.5 °C for some central areas of Phoenix and
Tucson. However, during the night, the cooling was less significant and typically ranged from
0.1 to 0.2°C. These results concur with those presented in Scherba et al. (2011) and recent
high-resolution modelling simulations for California (Georgescu 2015) reporting that typical
black and white roofs have similar skin temperature during the night but extremely different
during the day (black roofs are warmer).

Figure S1 (e—h) shows the mean impacts on near-surface air temperature for a high large-
scale deployment scenario of rooftop solar photovoltaic panels 752(FPV0.75) — To(CTRL).
During the day, cooling of 0.1-0.3 °C extends throughout both metropolitan areas with peak
cooling for both regions approaching 0.4 °C. During the night, most urban areas experienced
slight cooling ranging between 0.1 and 0.3 °C in Phoenix, and between 0.1 and 0.4°C in
Tucson. These results seem to indicate that cool roofs are more effective at cooling than
rooftop solar panels during the day, but not during the night.

Reduced deployment (coverage rates of 25 or 50 %) of cool roofs and rooftop solar photo-
voltaic panels did not reveal new phenomena (the 50 % case is discussed below and is shown
as Fig. S2 in the supplementary material). Cool roofs reduced near-surface temperatures
0.2-0.4 °C during the day while the reduction by solar photovoltaic panels ranged between
0.1 and 0.3 °C. During the night, both roofing technologies did not demonstrate a significant
impact for Phoenix but displayed cooling for Tucson (ranging between 0.1 and 0.3 °C), which
was stronger for the scenario with solar panels (up to 0.4°C).

Figure 4 shows the diurnal cycle of near-surface air temperature differences (we subtracted
the CTRL experiment from each WREF sensitivity experiment) averaged across the Phoenix
metropolitan area for all coverage rates (including the hybrid scenarios) of cool roof and
rooftop solar photovoltaic deployment (results for the Tucson metropolitan area are shown
as Fig. S3 in the supplementary material). During the day, deployment of cool roofs is more
effective at cooling the near-surface environment than rooftop solar photovoltaic panels.
However, during the night, solar panels are more effective at reducing the UHI intensity.

Finally, we estimated the robustness of our simulation results by calculating the number
of times (showed as a frequency in %) that near-surface air temperature difference (°C) was
in a particular range, by considering independently each urban grid cell and each hour during
the entire 10-day extreme heat period. Figures 5, 6 and 7 show results for all coverage rates
(including the hybrid scenarios) compared to the CTRL experiment. Near-surface cooling
for the most aggressive scenarios T>(ALB1.0) — T>(CTRL), T>(FPV1.0) — T,(CTRL), and
T>(FPV0.25_ALBO0.75) — T»(CTRL) (Figs. 5d, 6d, and 7c, respectively) occurred 71, 69, and
71 % of the time, providing confidence that simulated averaged impacts are a robust conse-
quence of cool roof and rooftop solar photovoltaic deployment. On the other hand, results
for the least aggressive scenarios 75(ALB0.25) — T>(CTRL), and 7>(FPV0.25) — T>(CTRL)
(Figs. 5a and 6a, respectively) illustrate a reduced probability of cooling. For these minimum
coverage rate scenarios cooling was simulated for 56 and 58 % of the time for solar panels
and cool roof technologies, respectively, illustrating reduced confidence that these strategies
can capably reduce near-surface temperatures.

3.2 Regional Impacts on Cooling Energy Demand

We next discuss summertime regional impacts of cool roof and rooftop solar photovoltaic
deployment on cooling energy demand. Figure 8 shows the diurnal cycle of citywide air-
conditioning electricity consumption (in MW km~2 of urban land) for all coverage rates
of cool roof and rooftop solar photovoltaic deployment for both Phoenix and Tucson
metropolitan areas. During July 2009, the observed monthly mean maximum near-surface air
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Fig. 4 a—c Diurnal cycle of modelled 2-m air temperature differences (we subtracted the CTRL simulation
from each WRF model experiment) averaged for the entire 10-day extreme heat period in July 2009 and
across the Phoenix metropolitan area for all coverage rates of cool roof deployment. b Same as in (a) but for
all coverage rates of rooftop solar photovoltaic deployment. ¢ Same as in (a) but for all the hybrid WRF model
experiments. Dashed lines represent = one standard deviation relative to mean difference showed by the solid
curves

temperature was 42.8 °C for Phoenix and 38.3 °C for Tucson (http://ag.arizona.edu/azmet/),
which explains why local cooling energy demands (MW km~2) were greater for the Phoenix
metropolitan area. Rooftop solar photovoltaic panels (Fig. 8a) reduced air-conditioning elec-
tricity consumption during the day but not during the night. In fact, during the night, solar
panels increased the cooling energy demand. For example, for the Phoenix metropolitan
area, FPV1.0 experiment decreased the maximum peak demand by 23 % but increased the
minimum demand (that normally happens shortly after sunrise) by 25 % compared to the
CTRL experiment. A roof partially covered with solar panels receives less incoming solar
radiation than a typical roof and, consequently, a smaller amount of heat is diffused into
the building. However, during the night, solar panels can reduce the radiative cooling of the
roof and increase the nocturnal building-cooling load. Dominguez et al. (2011) reported this
occurrence by means of observations. During the night, the interior ceiling surface temper-
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Fig. 5 a Bar charts depict the number of times (showed as a frequency in %) that the modelled 2-m air
temperature difference [AT = T>(ALBO0.25)— T5(CTRL)] (°C) was in a particular range considering inde-
pendently each urban grid cell and each hour during the entire 10-day extreme heat period. b—d Same as in
(a) but for 7, (ALBO0.5) — T5(CTRL), 75 (ALB0.75) — T, (CTRL), and 75 (ALB1.0) — 7> (CTRL), respectively.
AT < 0 (XX%) indicates the number of times (in %) that the modelled 2-m air temperature difference was
negative

ature under a roof partially covered with solar panels was greater than the interior ceiling
surface temperature of the same roof without solar panels.

Regional impacts of cool roof deployment (on cooling energy demand) are presented in
Fig. 8b. Cool roofs reduced heat transfer into the buildings across the diurnal cycle although
most of this decrease occurs during the day. During the night, black and white roofs maintain
a similar skin temperature and building-cooling load differences are less significant. For
example, the ALB1.0 experiment decreased the maximum peak demand by 14 % and the
minimum demand by 10 % compared to the CTRL experiment for the Phoenix metropolitan
area.

As a final point, we computed (see first two columns of Table 2) the degree of urban-wide
cooling energy demand savings across the diurnal cycle, for each scenario and metropolitan
area compared to the CTRL experiment. Results show that any coverage rate of large-scale
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Fig. 6 aBar charts depict the number of times (showed as a frequency in %) that the modelled 2-m air temper-
ature difference [AT = T»(FPV0.25) — T»(CTRL)] (°C) was in a particular range considering independently
each urban grid cell and each hour during the entire 10-day extreme heat period. b—d Same as in (a) but for
T>(FPV0.5) — To(CTRL), T»(FPV0.75) — To(CTRL), and 7»(FPV1.0) — T5(CTRL), respectively. AT < 0
(XX %) indicates the number of times (in %) that the modelled 2-m air temperature difference was negative

cool-roof deployment reduced considerably cooling energy demand, with a maximum saving
of 13-14 % computed for the most aggressive coverage scenario. On the other hand, large-
scale deployment of rooftop solar photovoltaic panels only produced a clear saving when
the coverage rate was greater than 50 %. It is important to keep in mind that these computed
savings do not account for the additional savings derived from electricity production from
solar panels. Rooftop solar panels combined with cool roofs (i.e., hybrid scenarios) reduced
cooling energy demand for all coverage rates of both roofing technologies, with the maximum
saving computed for the FPV0.25_ALB0.75 scenario.

Finally, to provide guidance on the potential consequences for air quality associated
with the implementation of these roofing technologies, we calculated changes in planetary
boundary-layer (PBL) depth for each scenario and metropolitan area compared to the CTRL
experiment (see last two columns in Table 2). It is evident that any coverage rate of large-scale
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o

cool roof and rooftop solar photovoltaic deployment reduce the convective PBL height, and
the maximum reduction (between & 150 to 225 m) was computed for the most aggressive
scenarios (i.e., ALB1.0, FPV1.0, and FPV0.25_ALBO0.75 experiments). Additionally, we
analyzed (for these previous WRF model experiments) the spatial distribution of PBL height
reduction averaged for the entire 10-day extreme heat period. Results show that the con-
vective PBL depth was reduced over both Phoenix and Tucson metropolitan areas (Fig. 9),
which reveals a reduced capability for the lower atmosphere to effectively mix pollutants
vertically, with potential implications for air quality (e.g., Georgescu 2015; Li et al. 2014 and
2015). However, Fig. 9 also illustrates complex and variable spatial gradients in areas located
outside the urban limits. We believe these structures are dependent on horizontal grid size
because similar effects have been documented in previous work (e.g., Ching et al. 2014), but
an analysis to determine their credibility requires future research and is beyond the scope of
the present work.
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Fig. 8 a Diurnal cycle of modelled air-conditioning electricity consumption (MW km~2 of urban land)
averaged for the entire 10-day extreme heat period in July 2009 and across the Phoenix (continuous curves)
and Tucson (dashed curves) metropolitan areas for all coverage rates of rooftop solar photovoltaic deployment.
b Same as in (a) but for all coverage rates of cool roof deployment

Table 2 Cooling energy savings across the diurnal cycle (%) and planetary boundary-layer depth reduction
(6h) (compared to the CTRL experiment) computed for both Phoenix (PHX) and Tucson (TUC) metropolitan
areas

WRF model experiments Cooling Cooling Sh (m) PHX 8h (m) TUC

energy savings energy savings

(%) PHX (%) TUC
ALBO0.25 22+04 2.8+0.6 —34.7+£73.1 —23.9+81.9
ALBO.5 524+04 6.3+0.9 —98.5 £81.5 —61.4£83.7
ALBO0.75 8.5+£0.7 9.8+1.3 —149.5+91.6 —114.0 £ 106.5
ALB1.0 13.1£1.0 142+1.6 —225.1 £109.2 —156.3 +89.6
FPVO0.25 —0.7£0.6 —-0.8£0.9 —43.8+£72.8 —352+77.0
FPVO0.5 —0.1£0.9 0.7£1.1 —78.8 £78.0 —43.5 £ 86.0
FPVO0.75 3.0£1.0 40+1.6 —135.7 +88.6 —81.8 £88.3
FPV1.0 8.7£1.0 11.0+£23 —155.0 +88.7 —85.9+75.8
FPV0.25_ALBO0.75 7.3+0.6 85+14 —171.1 £96.8 —122.3 +88.8
FPV0.5_ALBO0.5 45+0.8 5714 —134.6 = 86.0 —89.6 £84.0
FPV0.75_ALB0.25 43+£1.1 6.4+1.7 —131.4 +£88.0 —88.7£100.8
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Fig. 9 a, b Spatial distribution of the modelled PBL height reduction 2(ALB1.0 — CTRL) (m) averaged for
the entire 10-day extreme heat period in July 2009 for Phoenix (/eft) and Tucson (right) metropolitan areas. ¢,
d Same as in (a, b) but for S2(FPV1.0 — CTRL). e, f Same as in (a, b) but for s2(FPV0.25_ALB0.75 — CTRL).
Urban land use is bounded by black contours

4 Summary and Conclusions

Here we assess summertime regional impacts of large-scale cool roof and rooftop solar
photovoltaic deployment on near-surface air temperature and cooling energy demand using
a fully coupled modelling system composed of a regional climate model and a multilayer
building energy model. Our emphasis on hot semi-arid urban environments is justified given,
(1) significant summertime cooling demands for these regions, and (2) anticipated greater
urban growth rates within arid and semi-arid areas relative to other ecological zones in
future decades. There is therefore considerable interest in the design and implementation of
sustainable strategies that reduce the direct impact of urban expansion (e.g., the UHI) and
simultaneously reduce emissions of long-lived greenhouse gases.

Our results demonstrate that the deployment of cool roofs and rooftop solar photovoltaic
panels reduce near-surface air temperature and cooling energy demand at the scale of the
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metropolitan area. During the day, cool roofs are more effective at cooling than rooftop
solar panels, but solar panels are more efficient at reducing the nocturnal UHI magnitude
(i.e., horizontal 2-m air temperature difference), and therefore more directly combat effects
associated with urban development. For the most aggressive coverage rate deployment, cool
roofs (rooftop solar photovoltaic panels) lowered mean daytime (nighttime) near-surface air
temperature up to 0.8 °C. On the other hand, cool roofs are more effective than rooftop solar
panels at reducing daily cooling energy demand because solar panels increase nocturnal
building-cooling loads. When the maximum coverage rate was considered, the implementa-
tion of both roofing technologies reduced daily citywide cooling energy demand by 13—-14 %
for the case of cool roofs, and by 8—11 % for the case of rooftop solar photovoltaic panels.

Originally, solar photovoltaic panels were developed to diminish dependence on fossil
fuels aimed at mitigation of global warming, rather than to combat the UHI. However, we
show here that extensive deployment of rooftop solar photovoltaic panels can be considered
as an additional mitigation strategy. In addition to electricity generation, continued techno-
logical improvement via enhancement of solar conversion efficiencies can provide further
benefits for widespread deployment of solar panels. Although we demonstrate that both roof-
ing technologies (cool roofs and rooftop solar photovoltaic panels) are an effective way to
reduce urban temperatures and to alleviate UHI effects, potential implications for air qual-
ity associated with the reduction of PBL height requires additional investigation to more
comprehensively examine the merit of differing strategies. As a final point, we conclude by
pointing out that these results have been obtained during a summertime period and should not
be extrapolated to other seasons (e.g., winter) or to other cities in non-semi arid biomes. Mor-
phological differences among various urban areas (e.g., cities with different building plan
area fraction, different building sizes, etc) are also important considerations that warrant
assessment.
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